Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.

نویسندگان

  • N Hájos
  • C Ledent
  • T F Freund
چکیده

Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993). Immunocytochemical and electrophysiological studies revealed that in the hippocampus CB1 receptors are expressed on axon terminals of GABAergic inhibitory interneurons (Tsou et al., 1999; Katona et al., 1999) and activation of these receptors decreases GABA release (Hájos et al., 2000). Other physiological studies pointed out the involvement of CB1 receptors in the modulation of hippocampal glutamatergic synaptic transmission and long-term potentiation (Stella et al., 1997; Misner and Sullivan, 1999), but anatomical studies could not confirm the existence of CB1 receptors on glutamatergic terminals. Here we examined cannabinoid actions on both glutamatergic and GABAergic synaptic transmission in the hippocampus of wild type (CB1+/+) and CB1 receptor knockout mice (CB1-/-). The synthetic cannabinoid agonist WIN55,212-2 reduced the amplitudes of excitatory postsynaptic currents in both wild type and CB1-/- mice, while inhibitory postsynaptic currents were decreased only in wild type mice, but not in CB1-/- animals. Our findings are consistent with a CB1 cannabinoid receptor-dependent modulation of GABAergic postsynaptic currents, but a novel cannabinoid-sensitive receptor must be responsible for the inhibition of glutamatergic neurotransmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices

Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...

متن کامل

Mechanisms of cannabinoid-receptor-mediated inhibition of synaptic transmission in cultured hippocampal pyramidal neurons.

Cannabinoids, such as marijuana, are known to impair learning and memory perhaps through their actions in the hippocampus where cannabinoid receptors are expressed at high density. Although cannabinoid receptor activation decreases glutamatergic synaptic transmission in cultured hippocampal neurons, the mechanisms of this action are not known. Cannabinoid receptor activation also inhibits calci...

متن کامل

Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission.

It is widely accepted that cannabinoids regulate GABA release by activation of cannabinoid receptor type 1 (CB1). Results obtained from a variety of brain regions consistently indicate that cannabinoid agonists can also reduce glutamatergic synaptic transmission. However, there are still conflicting data concerning the role of CB1 in cannabinoid-induced inhibition of glutamatergic transmission ...

متن کامل

Repeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo

Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...

متن کامل

Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse.

The endogenous cannabinoid system has been shown recently to play a crucial role in the extinction of aversive memories. As the amygdala is presumably involved in this process, we investigated the effects of the cannabinoid receptor agonist WIN 55,212-2 (WIN-2) on synaptic transmission in the lateral amygdala (LA) of wild-type and cannabinoid receptor type 1 (CB1)-deficient mice. Extracellular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2001